• AstroStelar [he/him]@hexbear.net
    link
    fedilink
    English
    arrow-up
    36
    ·
    7 hours ago

    Bismuth-209 was long thought to have the heaviest stable nucleus of any element, but in 2003, a research team at the Institut d’Astrophysique Spatiale in Orsay, France, discovered that 209Bi undergoes alpha decay with a half-life of 20.1 exayears (2.01×1019, or 20.1 quintillion years), over 109 times longer than the estimated age of the universe.

    Due to its hugely long half-life, for all known medical and industrial applications, bismuth can be treated as stable.

      • ExotiqueMatter@lemmygrad.ml
        link
        fedilink
        English
        arrow-up
        10
        ·
        5 hours ago

        100 per gram of the bismuth part of the transistors per years. But even decades old transistors have volume measured in nanometers cubed which implies a negligible mass.

        Assume the transistors are 10 nm, the volumic mass of bismuth is 9750 kg/m^3 = 9.75 * 10^-6 kg/nm, which means, assuming the bismuth part of the transistor is 10 nm^3 it weigh 9.75 * 10^-6 * 10 kg = 9.75 * 10^-5 kg.

        100 event per gram per year is 1000 event per kg per year, which means approximately 1000 * 10^-5 = 10^-2 event per 10^-5 kg per year or 1 event per 100 000 years per transistor. assuming there is a billion transistors in a chip that’s 10^9 * 10^-5 = 10^4 event per year in a chip.

        A bismuth atom has a radius of approximately 160 picometers = 0.16 nm. To simplify, let’s assimilate the atoms to cubes of volume 0.16 nm^3. Then, per our previous assumption, a transistor in our chip has a side 10 / 0.16 = 62.5 atoms long which means it contains 62.5^3 = 244 140.625 atoms of bismuth, let’s round it down to 244 140 atoms, which means the billion transistors of the chip contain 10^9 * 244 140 =~ 2.441 * 10^14 atoms of bismuth.

        Which means that 1000 atoms decay per year out of ~ 2.441 * 10^14 atoms (1000 / ~ 2.441 * 10^14) * 100 =~ 4.096 * 10^-10 % of the bismuth. At this rate it would take well over 5 * 10^9 years, or 5 billion years, for half a percent of the material to have decayed.

        TL;DR: AstroStelar [he/him] is right, for all intent and purposes bismuth is stable.

        • unperson [he/him]@hexbear.net
          link
          fedilink
          English
          arrow-up
          4
          ·
          edit-2
          6 hours ago

          Every decay will result in at least one crystal defect. Alpha particles don’t travel very far, so it probably cause another crystal defect nearby, and maybe a short chain reaction. I’m sure they can work around it but I don’t think it will be easier to deal with than the defects due to ion migration they already have to deal with in Silicon.

      • AstroStelar [he/him]@hexbear.net
        link
        fedilink
        English
        arrow-up
        3
        ·
        5 hours ago

        Modern CPUs have transistors at least in the tens of millions, the most advanced have billions. A gram of bismuth has ~2*10^21 atoms. Pre-existing impurities would probably be a bigger factor by orders of magnitude.