@zogwarg For a traditional database, you can get those “lions/cheetahs/tigers” by manually attaching metadata to all videos. That is slow, error-prone, and expensive. It also only works for the metadata you *think* to assign to videos.
A good vector database takes a query in natural language and lets you search the “meaning” of unstructured data. You can search a data corpus much faster this way even though it’s largely unstructured data!
That’s real value, and it’s not expensive.
@zogwarg I’ve written up a quick explanation at https://gist.githubusercontent.com/Ovid/17b19faf2fb7e0019e375e97f0a4c8af/raw/196735daa5274ded8f2363a41d78a490e8325f67/vector.txt
And yes, this is still GenAI. “Gen” doesn’t just mean “generating text”. It also relates to “understanding” (cough) the meaning of your prompt and having a search space where it can match your meaning with the meaning of other things. That’s where it starts to “generate” ideas. For vector databases, instead of generating words based on the meaning, it’s generating links based on the meaning.