- cross-posted to:
- [email protected]
- cross-posted to:
- [email protected]
Black holes the size of an atom that contain the mass of an asteroid may fly through the inner solar system about once a decade, scientists say. Theoretically created just after the big bang, these examples of so-called primordial black holes could explain the missing dark matter thought to dominate our universe. And if they sneak by the moon or Mars, scientists should be able to detect them, a new study shows.
In case this doesn’t tell you a lot, 1017 grams is half the weight of Mount Everest, and 1023 grams is 4x the weight of the Antarctic ice shield.
Hmmm how much would it be in football stadiums?
One, if it was a football stadium the size of Mount Everest.
I can only do Olympic swimming pools or bananas.
The earth is estimated to “weigh” 13,170,000,000,000,000,000,000,000 pounds. (That is weird when you think about it. The weight of the earth being based on what something weighs on earth, I mean.)
Mt. Everest is only about 357,000,000,000,000 pounds and is just a tiny fraction of the mass of the earth.
So. My point is that we need a better way to portray scale of things in the universe. AUs work to a point but then we have to quickly move to parsecs. Parsecs quickly give way to light years. (Or vice-versa, depending on how you visualize things better.) Light years kinda work, but only for between 14-26 billion years. Even after all of that, I can hardly still fathom the size of Mt. Everest. (This was a rant, but not an angry rant.)
I cannot fathom the size of anything on an astronomical scale. I have seen the videos that zoom out and show Earth at scale with the Sun and then the Sun at scale with other stars. No matter how many times I view the facts it will be incomprehensibly large.
Well, for a start, God uses the metric system.
Fuckin everyone uses the metric system
Even aliens building the pyramids used the metric system
God uses base 12, he doesn’t arbitrarily settle on base 10 just because he has that many fingers.
Weight in pounds isn’t the right unit here. Weight varies depending on the strength of the gravitational field you’re in, whereas mass does not. A kilogram here on earth weighs 2.2lbs but on the moon it only weighs 0.36lbs.
In the English Engineering System, the unit of mass is 1 pound mass (lbm), and is equivalent to the amount of matter that weighs 1lb at 1G. I won’t argue that EES is a good system, but it does at least have a kludged unit for mass. It has an equally kludged unit for force, too, called pounds force (lbf).
I called that out. It was the weight of the earth… on earth.